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ABSTRACT 
This paper reports our ongoing work investigating the structural 
features of scientific collaboration based on metadata collected 
from a scientific data repository (SDR). The background literature 
is reviewed in supporting our claim that metadata collected from 
SDRs offer a complimentary data source to traditional publication 
metadata collected from digital libraries. Methodological 
considerations are discussed in association with using metadata 
from SDRs, including author name disambiguation and data 
parsing. Initial findings show that the network has some unique 
macro-level structural features while also in agreement with 
existing networks theories. Challenges due to inconsistent metadata 
quality control procedures are also discussed in an attempt to 
reinforce claims that metadata should be designed to support both 
domain specific retrieval and evaluation and assessment needs. 

Categories and Subject Descriptors 
H.3.7 [Digital Libraries]: User Issues, Collections. 

General Terms 
Measurement, Design, Theory. 

Keywords 
Scientific data repositories, scientific collaboration, scientific 
collaboration networks, complex network analysis, metadata 

1. INTRODUCTION 
The emergence of scientific data repositories (SDRs) as tools for 
supporting the sharing, archiving, and processing of scientific data 
for research fields is thought to be changing the scale and structure 
of scientific collaboration [1]. However, little empirical work has 
been done on the structure of networks emerging around SDRs. In 
this paper, we discuss: some of the differences between traditional 
digital libraries designed for publications and SDRs, how SDRs 
may serve as a complementary source of data for studying scientific 
collaboration, and methodological challenges of working with 
metadata from SDRs. Finally, we report on our preliminary 
findings studying one network emerging around a specific SDR. 

1.1 Scientific Data Repositories 
Over the past two decades, there has been a shift to 
cyberinfrastructures (CI) enabled science. The National Science 
Foundation instituted an Advanced Cyberinfrastructure Division to 
provide guidance and develop a framework for maximizing the use 
of CI to promote scientific inquiry. Data sets are considered key 
components of 21 st Century science and engineering [2]; as such, 
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the generation, analysis, storage, sharing and reuse [3], [4] of data 
are critical policy priorities. 

There are two approaches to storing, searching, and accessing data 
for reuse and integration. On one hand, scientific data repositories 
support the storage, dissemination, analysis and linking of data sets, 
and are being employed in a variety of fields from ecology to 
physics. Examples include the World Wide Molecular Matrix, 
ALADDIN for atomic and nuclear processes data, Brain 
Biodiversity Bank, and GenBank for genetic data. On the other 
hand, there are attempts to develop systems which support the 
search and use of smaller data sets produced by scientists for 
smaller, somewhat independent projects [5]. 

In this research we explore one example of an SDR - GenBank, the 
international nucleotide sequence databank. GenBank is run by the 
National Center for Biotechnical Information, and has been in 
operation since 1984. GenBank is now part of the international 
nucleotide sequencing consortium in which each member 
exchanging information daily. 

GenBank houses genome sequencing data for over 130 billion base 
pairs covering 250 000 different species [6]. GenBank has doubled 
in size roughly every eighteen months. In addition to storing genetic 
information, GenBank provides a number of tools for discovery and 
analysis. 

The repository has been well adopted by its respective community, 
which now requires all scientists to submit genetic data to the 
repository prior to publication. In addition to storing genetic 
information for scientific publications, GenBank serves as a 
repository for patented genetic information. 

As stated earlier, SDRs are one aspect of cyberinfrastructure 
enabled (CI) science, and they are a key component of the "Fourth 
paradigm of science " proposed by Jim Gray [7]. The fourth 
paradigm refers to a data intensive approach to science, requiring 
the integration of skill sets from many domains [8]. As a result, it 
is argued that this data intensive approach is affecting the structure 
and scale of scientific collaboration [I]. Before going into detail 
about the structure of collaboration, we provide a brief justification 
for continued research on the phenomenon of scientific 
collaboration. 

1.2 Scientific Collaboration 
Scientific collaboration is a critical component of science along 
many dimensions; for example, it is a mechanism for socializing 
[9] and training [10] new researchers, sharing resources or expertise 
[II], and to lesser extent, a form of diplomacy [12]. Scientific 
collaboration is thought to spur economic development [13], 
particularly when integrated with government and industry partners 
[14]. Given the importance of collaboration to the scientific 
endeavor, Bozeman and colleagues [15] argued that each scientist 
should be looked at as having scientific and technical human 
capital. That is to say, a scientist's value is based on both their 
domain knowledge and professional social network. 

Consequently, there is considerable interest at the policy level for 
understanding and fostering scientific collaboration. The Science 
of Science Policy Program considers the study of the structure and 
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evolution of networks, along with the development of subsequent 
methodology, tools, and techniques, to be key components of the 
program [16]. 

1.3 The structure of scientific collaboration 
Although scientific collaboration has been studied for over five 
decades, the use of network analysis frameworks to study the 
phenomenon has only recently begun to be popular. Advances in 
graph theory and computational power have enabled their 
widespread application, which has resulted in rapid developments 
in network analysis frameworks. 

We will not provide a review of the literature on scientific 
collaboration networks here, as our purpose is instead to look at this 
problem more from the intersection between methodological 
considerations and digital repositories. There are several good 
reasons for using network analysis framework for studying 
scientific collaboration. The first is that the reconstruction of 
collaboration networks helps us explore the theories behind the 
social construction of knowledge. The second reason is that 
reconstructions of networks can help us find subject matter experts 
[17]. Network analysis also helps us understand, visualize, and 
quantify different forms of status or roles within communities [18]
[21 ]. 

In the next section we will cover the roles digital libraries have 
played in the study of scientific collaboration networks and some 
of the challenges associated with using digital libraries as a source 
of data for the study of scientific networks. We will then discuss 
how scientific data repositories may be mined for collaboration 
data, the benefits of using SDRs as a source of data, and the 
challenges associated with their use. 

2. METHODOLOGY 
Although collaboration can be broadly construed, it is often 
operationalized as co-authorship, where any two scientists are 
considered to have collaborated if they wrote a paper together. 
There are known limitations of this approach to operationalization, 
both as it relates to under-representing and over-representing 
collaboration. 

In terms of under-representing collaboration, using co-authorship 
as a measure of collaboration misses informal feedback which may 
be critical for the success of a project [22], and masks the shifting 
nature of contributions. To some extent, the former concern is well 
documented and addressed by the growth in use of 
acknowledgements to give credit to those who have made 
contributions that do not quite warrant co-authorship [23]. 

With respect to co-authorship over-representing collaboration, the 
primary concern is the tendency for researchers to give honorary 
co-authorship credit to other scientists for social reasons [24]. 

Although these concerns remain valid, co-authorship is still 
considered a useful measure for collaboration [25]. Given the fact 
that co-authorship is the most frequently used measure of 
collaboration, metadata from scientific articles is the primary 
source of data for collaboration studies. In turn, digital libraries are 
the primary source of metadata. It is important to note that some 
researchers use a combination of qualitative or ethnographic studies 
to augment the data collected from digital libraries [26]. 

Although co-authorship is still useful for measuring collaboration, 
it only represents a summary of contributions. That is, it obscures 
who contributed what to the creation of the product. For example, 
who is responsible for generating data for analysis? Traditionally 
this has been the work of the subject matter expert. However, more 
recently there has been an increasing role of specialists in the 

creation of data [27], [28]. How can we tell who contributed to the 
generation of the data, as most data products are mid-stream 
creations in the scientific process? One approach is to develop a 
contributory taxonomy which would allow scientists to match roles 
to authors when submitting research [29]. We can also look at 
knowledge products other than final publications (e.g., data sets), 
because in many cases scientists still lay intellectual claim to those 
products. We demonstrate here that this holds true when they 
submit data products to SDRs. 

Therefore, we argue that SDRs are complimentary sources of data 
to explore scientific collaboration. If it is true, then metadata 
extracted from SDRs can be used as a source of data for validating 
and testing models and theories developed on article-based co
authorships. The remainder of this section will cover some of the 
challenges we have encountered using metadata from an SDR to 
study scientific collaboration. 

Our source of data is GenBank (see above). In addition to making 
genetic data searchable via a web interface, NCB! hosts an ftp site 
that has all the data and metadata in semi-structured text files. In 
August 2013 we downloaded the entire contents of GenBank, 
parsed out all metadata from the text files, dropped the genetic 
sequence data, and then parsed the metadata into a MySQL 
database. 

The next phase involved data cleanup and resolution. As with most 
sources of data, GenBank's metadata quality is mediocre, with 
some inconsistencies in the formatting of organizational and 
consortium affiliations, and date entries. The costs associated with 
developing tools to parse the data is non-trivial, adds considerable 
costs to each assessment exercise, and speaks to the need for 
developing automated tools that assist in metadata quality 
improvement. 

Additionally, named entity resolution continues to be a problem 
[30]. Almost all studies using co-authorship have this problem. An 
increasing number of studies use disambiguation algorithms to 
address this issue and ours is no exception. We too are employing 
disambiguation algorithms, and are able to leverage a subset of the 
data collected as ground-truth data because it is attached to well
curated metadata from PubMed. 

One major challenge we face is understanding what constitutes a 
contribution. When working with pUblication information, 
researchers assume that each publication required a roughly equal 
amount of effort to produce, and therefore each publication is given 
equal weight. Based on that assumption, researchers can opt to give 
full-credit or fractional-credit [31], [32] for each publication 
scientists are listed as an co-author for. However, there is no easy 
way to apply either full or fractional counting methods to data 
contributions. 

Data sets are uploaded as submissions, which include some set of 
annotations with distinct gi numbers. The annotations cover a 
subset of the total number of base pairs for the organism. Most 
submissions are associated with one or more references. 

References include publications, direction submissions, and 
unpublished references. The ratio of references to annotations for 
non-patented sequences is roughly 1: 112. 

However, things change when we include patents, with the ratio of 
annotations to patents being 1: 1. This means that scientists will 
aggregate and report on many sub-sections of sequenced DNA in 
one publication while patenting each sub-section. This makes it 
difficult to understand or measure productivity. One possible 
solution is to use the number of base pairs per reference or patent 
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as a guide, but this may differ from species to species making it 
difficult to apply across the board. 

One additional consideration is how to select appropriate social foci 
for extracting sub-sections of the population for more in-depth 
analysis. Our intuition is that the species serves as the primary focal 
point for community formation, but we have not been able to 
empirically test that hypothesis yet. 

In the next section we report on our macro-level analysis of the 
database. This includes measuring standard network analysis 
concepts such as the clustering coefficient, degree distribution, 

3. PRELIMINARY RESULTS 
After extracting the metadata from GenBank records, we have 
identified almost 176 million annotations to the database, covering 
some 1.35 million references and 25 million patents. As of the time 
of submission of this report, we have identified 545,000 individual 
authors after our first pass at name disambiguation. This does not 
include scientists associated with patents, as that data has not been 
fully parsed yet. There are 931 consortiums listed in the metadata, 
with an unresolved number of institutions (Table I). 

Table 1. Macro-level statistics 

No. of scientists 545,534 

No. of annotations 175,889,683 

No. of references 1,351,049 

Mean authors per reference 5.18 

Mean references per author 12.5 

No. of components 2,699 

Size of giant component 98.3% 

Clustering coefficient .172 

Like many previous studies, we see a power law distribution of 
connections and productivity. On the average, a scientist produced 
12.5 submissions (11 = 12.5, (J = 194.8) and a maximum value of 
39,747. While the very large deviations may be the results of 
various reasons, it seems to also reflect the fact that some lab 
managers affix their name to every submission, which makes them 
appear to be exceptionally productive [33]. 

As for the number of scientists per reference, we have a 11=5.18, cr= 

11.9 and a maximum of 415. Although very few references have 
that many scientists, we can see why researchers are concerned 
about the tendency for co-authorship to over-represent 
collaboration. 

The size of a giant component is another finding worth 
highlighting. The giant component refers to the percentage of 
scientists in the community who are all directly or indirectly 
connected to one another. In some cases, there are multiple 
components that are not connected in any way, essentially 
indicating that the populations are isolated from one another. One 
of the initial concerns of using metadata as a source of data for 
studying collaboration was that it might not contain enough 
information to reconstruct a network. Yet our analysis indicates an 
exceptionally high level of connectivity, with it being much higher 
than results from other data sources, which often range from 57-
88%, and one or two exceeding 90%. 

The clustering coefficient, or the tendency of scientists to 
collaborate with their collaborators' collaborators, indicates that the 
community is only moderately well-connected, at least as far as 
social networks go. Coupled with the observed degree distribution 
we can say that this is a relatively hierarchical system with a few 
scientists controlling much of interactions. Finally, based on the 

average path length, the small-world theory that the average path 
length increases in proportion to the log of the number of scientists 
in the network holds true for this network as well [34]. 

4. DISCUSSION 
In this report we discussed the increasing emphasis on developing 
and employing quantitative measures to track and assess scientific 
collaboration. More specifically, advancing theories, techniques 
and methodologies associated with studying scientific 
collaboration networks is a critical component of the Science of 
Science Policy Program [16]. 

In the past, digital libraries, including proprietary databases and 
open pre-print archives have served as the traditional source of data 
for studies on scientific collaboration. There are known limitations 
of using this data for studying collaboration. We have argued that 
scientific data repositories can serve as a complimentary source of 
data, both for verifying and advancing scientific theory. 

We covered a number of methodological challenges associated 
with using SDRs as a source of data for collaboration studies. We 
would like to highlight the fact that metadata quality dramatically 
impacts the costs of using article archives and research data 
repositories as sources of data for these studies. As a result we 
suggest designing metadata schemes to support both domain 
specific information retrieval and evaluation and assessment needs. 

Our initial analysis indicates that the metadata obtained from 
GenBank reasonably represent a community, as evidenced by the 
size of the giant component, clustering coefficient and average path 
length. Furthermore, the exhibited degree distribution conforms to 
our expectations, as it is similar to many other findings. 

Looking to the future, SDRs will continue to serve as an important 
infrastructural component for the scientific process. Scientists will 
continue to share and, perhaps to a greater degree reuse, data. We 
also see data from SDRs being integrated with other sources into a 
more complete story of collaboration, supporting the inquiry of 
researchers and policy makers who are interested in learning who 
contributes what to the production of knowledge [29]. 
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